1) Доно:
треугольники АВС и АВD
AB биссектриса углов САD и CBD
BC=CD
Доказать:
АВС=СВD
Доказательство:
Т.к. АВ биссектриса угла САD отсюда следует, что CAB равен BAD. По теореме УСУ, если две углов и одна сторона треугольника равны углам и стороне другого треугольника, то эти треугольники равны, отсюда следует что треугольники равны.
2) Доно:
треугольники RSO и POT
RO=OT; SO=OP
Доказать:
RSO=POT
Доказательство:
По теореме смежных углов, угол ROS равен углу POT. По теореме СУС, если две стороны и один угол треугольника равен другому то эти треугольники равны, отсюда следует что треугольники равны.
3) Доно:
треугольники EOF и MON
EO=ON и угол FEO=ONM
Доказать:
EOF=MON
Доказательство:
Т.к. угол FEO=ONM равны, то соответственно и стороны будут равны, отсюда следует что FO=MO. По теореме СУС, если две стороны и один угол треугольника равен другому то эти треугольники равны, отсюда следует что треугольники равны.
1)У этих треугольников сторона AC - общая. Также, в равнобедренном треугольнике углы при основании равны, а значит два угла CAK и PCA равны. Углы KCA и СAP тоже равны, так как биссектриса разбивает угол на две равные части. Отсюда получаем, равные треугольники по второму признаку равенства треугольников.
2)ABC=2DAB-28*. (Так как величина внешнего угла треугольника равна сумме величин двух внутренних углов, несмежных с ним.)
ABC=180*-2(180*-BDA-DAB)=180*-360*+2BDA+2DAB. (Так как ABC и ABD*2 (биссектриса делит угол пополам) смежные углы, а сумма величин всех внутренних углов треугольника BDA равна 180*.)
Приравниваем эти два выражения и получаем:
2DAB-28*=180*-360*+2BDA+2DAB;
152*=2BDA;
BDA=76*.
ответ 76*.
3 , 3 , -3
Объяснение:
По идеи так, но уверен только на 95% ¯\_(ツ)_/¯