ответ:
формула площі трикутника за стороною та висотою
площа трикутника дорівнює половині добутку довжини сторони трикутника та довжини проведеної до цієї сторони висоти
s = 1 a · h
2
формула площі трикутника за трьома сторонами
формула герона
s = √p(p - a)(p - b)(p - c)
формула площі трикутника за двома сторонами і кутом між ними
площа трикутника дорівнює половині добутку двох його сторін помноженого на синус кута між ними.
s = 1 a · b · sin γ
2
формула площі трикутника за трьома сторонам і радіусом описаного кола
s = a · b · с
4r
формула площі трикутника за трьома сторонами і радіусом вписаного кола
площа трикутника дорівнює добутку півпериметра трикутника на радіус вписаного кола.
s = p · r
де s - площа трикутника,
a, b, c - довжини сторін трикутника,
h - висота трикутника,
γ - кут між сторонами a и b,
r - радіус вписаного кола,
r - радіус описаного кола,
p = a + b + c - півпериметр трикутника.
2
объяснение:
1) Докажите,что DE⊥BC.
2) Найдите DE, если AB = 4 см, AD = 3 см.
1) Доказательство:
▪DA - перпендикуляр к плоскости АВС
АЕ - перпендикулярен ВС ( В равностороннем треугольнике любая медиана является и высотой, и биссектрисой )
Значит, по теореме о трёх перпендикулярах DE перпендикулярен ВС, что и требовалось доказать.
*** см. приложение ***
2) Решение:
▪ Рассмотрим тр. АВС:
Высота в равностороннем треугольнике рассчитывается через сторону по формуле:
h = a•V3 / 2 => AE = ABV3/2 = 4V3/2 = 2V3 см ( см. приложение )
▪ИЛИ рассмотрев прям. тр. АВЕ:
ВЕ = ЕС = ВС/2 = 4 / 2 = 2 см
По теореме Пифагора:
АВ^2 = АЕ^2 + ВЕ^2
АЕ^2 = 4^2 - 2^2 = 16 - 4 = 12
АЕ = V12 = V( 4 • 3 ) = 2V3 см
▪Рассмотрим прям. тр. DAE: по т. Пифагора
DE^2 = АD^2 + AE^2
DE^2 = 3^2 + ( V12 )^2 = 9 + 12 = 21
DE = V21 см
☆ ОТВЕТ: 1) доказано ; 2) V21 см ☆