ответ: AD ≈ 11,95 см .
Объяснение:
У ΔАВС ВС = 8 см ; АС = 12 см ; АВ = 15 см . Найбільшою є
висота , до найменшої сторони тр - ника . За теоремою
косинусів ∠С - тупий . Висота AD проводиться до продовження
сторони ВС . Нехай CD = x см , тоді BD = ( x + 8 )².
Із прямок. ΔACD AD² = 12² - x² .
Із прямок. ΔABD AD² = 15² - ( x + 8 )² .
Із 2- ох останніх рівностей маємо : 12² - x² = 15² - ( x + 8 )² ;
144 - х² = 225 - х² - 16х - 64 ;
16х = 17 ;
х = 17/16 = 1 1/16 , тоді висота AD = √( 12² - (17/16 )² ) = √36575/16 =
= 5√1463/16 ≈ 11,95 ( см ) ; AD ≈ 11,95 см .
1. Дано: КМРТ - трапеция, КМ=РТ, КТ=14 дм, МР=8 дм. МН - высота, МН=4 дм. Найти КМ.
Решение: проведем высоту РС.
МР=СН=8 дм.
ΔКМН=ΔРСТ по катету и гипотенузе, КН=СТ=(14-8):2=3 дм.
Рассмотрим ΔКМН - прямоугольный, КН=3 дм, МН=4 дм, значит КМ=5 дм (египетский треугольник).
ответ: 5 дм.
2. Дано: КМСТ - прямоугольник, Р=56 см, КТ-МК=4 см. Найти МТ.
Решение: МК+КТ=56:2=28 см. Пусть КТ=х см, тогда МК=х-4 см.
Составим уравнение: х+х-4=28; 2х=32; х=16.
КТ=16 см; МК=16-4=12 см. Тогда по теореме Пифагора
МТ=√(16²+12²)=√(256+144)=√400=20 см.
(или просто: МТ=20 см, т.к. МК:КТ=12:16=3:4; МКТ - египетский треугольник)
ответ: 20 см.