Т.к. пирамида правильная, боковые грани являются равнобедренные треугольники, а следовательно апофема является высотой и медианой. Апофема и боковое ребро образует прямоугольный треугольник. По теореме Пифагора можно найти сторону основания пирамиды. Пусть сторона основания пирамиды равно а, тогда а^2=100-64=36; a=6 Площадь боковой поверхности равна сумме площадей боковых граней/Найдем площадь одной из граней S=1/2*6*8=24 Sбок=3S=3*24=72
Очень просто. Обозначим катеты как a и b. По теореме Пифагора a^2 + b^2 = 15^2 = 225. Как известно, площадь прямоугольного треугольника равна половине произведения катетов: a*b*0.5 = 54. Составляем систему из этих двух уравнений. Решаем подстановкой, допустим, возьмем катет a: a = 54/(0.5*b) = 54*2/b = 108/b. Далее подставляем в первое уравнение. Только не пугайся, числа большие: (108/b)^2 + b^2 = 225; 11664/b^2 + b^2 = 225. Умножаем обе части на b (в этом отношении мы можем делать что угодно, ведь длина катета - величина положительная) : 11664 + b^4 = 225*b^2. Переносим все в левую часть: b^4 - 225*b^2 + 11664 = 0. Заменим b^2 на x, тогда b^4 = x^2: x^2 - 225x +11664 = 0. Решаем квадратное уравнение: дискриминант равен (-225)^2 - 4*1*11664 = 50625 - 46656 = 3969 = 63^2. Далее находим корни: x1 = (-(-225) - 63)/2*1 = (225-63)/2 = 162/2 = 81. Т. е. x1 = 81, а значит b1 = корень квадратный из 81 = 9 (помним: длина катета - величина положительная) . Т. е. один катет мы уже нашли - он равен 9 см. Второй корень уравнения лучше не искать, второй катет можно найти из подстановки a = 108/b = 108/9 = 12. Все. Мы нашли катеты, они равны 9 см и 12 см соответственно. Задача решена. Можно сделать проверку: площадь равна 0.5*a*b = 0.5*12*9 = 54 см^2.
1) Равнобедренный, остроугольный, разносторонний 2) Равнобедренный треугольник — треугольник, в котором две стороны равны между собой. По определению, правильный треугольник также является равнобедренным, но обратное утверждение неверно. 3) У которого все стороны равны и углы по 60 градусов 4) Равносторонний треугольник по определению не является равнобедренным, так как в равнобедренном треугольнике равны между собой только две стороны, а в равностороннем – все стороны равны между собой. Равносторонний треугольник является только частным случаем равнобедренного, но отличается от него. Чтобы построить равносторонний треугольник достаточно знать длину только одной стороны, а для построения равнобедренного надо знать длины двух сторон. Определение равнобедренного треугольника приведенное Лейбом абсолютно правильное.
Площадь боковой поверхности равна сумме площадей боковых граней/Найдем площадь одной из граней S=1/2*6*8=24
Sбок=3S=3*24=72