См. Объяснение
Объяснение:
Доказательство.
1) Так как, согласно условию задачи, АС = СD, то это означает, что треугольник ACD является равнобедренным, а сторона AD является основанием равнобедренного треугольника.
2) Так как точка М является серединой противоположной стороны АD, то это означает, что СМ является медианой, так как, согласно определению: медиана – это отрезок, соединяющий вершину треугольника с серединой стороны, противоположной этой вершине.
3) Медианы равнобедренного треугольника обладают следующими свойствами: в равнобедренном треугольнике две медианы, проведенные к равным боковым сторонам треугольника, равны, а третья медиана, проведённая к основанию, одновременно является высотой, а также биссектрисой угла, из которого она проведена.
Это означает, что медиана СМ одновременно является высотой.
4) Согласно определению высоты: высота – это линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.
Следовательно, высота СМ перпендикулярна AD, - что и требовалось доказать.
1) ∠ABC=∠ABD, BC=BD
△ABC=△ABD (по двум сторонам и углу между ними, AB - общая сторона)
2) ∠NMK=∠PKM, NM=PK
△NMK=△PKM (по двум сторонам и углу между ними, MK - общая)
3) RO=TO, OS=OP
∠ROS=∠TOP (вертикальные углы)
△ROS=△TOP (по двум сторонам и углу между ними)
4) ∠E=∠N, EO=NO
∠EOF=∠NOM (вертикальные углы)
△EOF=△NOM (по стороне и прилежащим к ней углам)
5) ∠Q=∠F, QM=PM
∠QMK=∠PMF (вертикальные углы)
△QMK=△PMF (по стороне и прилежащим к ней углам)
6) ∠BAC=∠DCA, ∠ACB=∠CAD
△BAC=△DCA (по стороне и прилежащим к ней углам, AC - общая)
∠B=∠D, BA=DC (соответствующие элементы равных треугольников)
∠BAC-∠CAD=∠DCA-∠ACB <=> ∠BAO=∠DCO
△BAO=△DCO (по стороне и прилежащим к ней углам)
7) EM=FN, ∠EMN=∠FNM
△EMN=△FNM (по двум сторонам и углу между ними, MN - общая)
∠E=∠F, ∠MNE=∠NMF (соответствующие элементы равных треугольников)
∠EMN-∠NMF=∠FNM-∠MNE <=> ∠EMP=∠FNP
△EMP=△FNP (по стороне и прилежащим к ней углам)
8) AB=AD, BC=DC
△ABC=△ADC (по трем сторонам, AC - общая
Объяснение: