ABC - равносторонний треугольник. - его проекция на плоскость P. . Отложим на перпендикулярах отрезки дм. Тогда BM = 15-10 = 5 дм, CM = 17-10 = 10 дм. Точка О - центр ABC, т.е. точка пересечения его медиан. Медиана правильного треугольника ABC делится точкой O в соотношении AO:OD = 2:1, откуда AO:AD = 2:3 Опустим из точки D перпендикуляр на плоскость в точку . Этот перпендикуляр разделит отрезок NM пополам. Значит медиана треугольника . Отрезок - средняя линия трапеции BCNM. Его длина дм. Треугольники подобны по первому признаку: - общий, . Тогда дм. Учитывая вышеизложенное, получаем дм.
. Так как АВ||СD, то угол ABD равен углу BDC, Треугольники ABD и BDC равнобедренные, так как их боковые стороны AB, BD и BC - радиусы окружности и равны 5. Диагональ АС может быть найдена из треугольник ABC (он тоже равнобедренный, АС - его основание), Надем АС из свойства синуса угла В при вершине данного треугольника. Угол B=β+γ, из тругольника BDC γ=180−2β. Тогда угол B=β+180−2β=180−β. Из равнобедренного треугольника ABC имеем AC=2∗AB∗sin(180−β2)=10∗sin(90−β/2)=10∗cos(β/2). cos(β/2) найдем из равнобедренного треугольника ABD: cos(β/2)=h/AB, где h - высота данного треугольника (обозначена синей линией на рисунке). h=52−32−−−−−−√=4, тогда cos(β/2)=4.5, следовательно, AC=10∗45=8. ответ 8.
Объяснение:
ΔАВС равнобедренный ,значит ∠С=∠ВАС=80.
∠КАР=80-40=40.
ΔАКР-равнобедренный ,значит ∠КАР=∠КРА=40.Найдем ∠АКР=180-40-40=100
КР║АС, тк. сумма односторонних углов 180 :∠АКР+∠КАС=100+80=180 при секущей АК.