АВСД - прямоугольник. О - пересечение диагоналей ОК срединный перпендикуляр к диагонали ВД. Тогда по условию: КС = СД.
То есть тр. ДКС - прям, равноб. Значит его острые углы - по 45 гр.
СДК = 45 гр = ДКС
Угол ДКС - внешний для равнобедр. тр-ка ВКД (КД = ВК - по св-ву срединного перпенд)Значит: 2*КДВ = 45 гр.
Или угол КДВ = 22,5 гр.
Тогда угол СДО в тр. СОД равен:
СДО = 45 + 22,5 = 67,5 гр и равен ОСД (т.к тр.СОД - равнобедр)
В итоге находим искомый угол СОД = 180 - (67,5 + 67,5) = 45 гр.
ответ: 45 гр(острый) или 135 гр (тупой)
а) Из условия имеем, что точка пересечения высот лежит на FD. Это может быть только если тр-к DFE - прямоугольный, угол F = 90 гр.
Найдем катет FD:
FD = кор(17^2 - 8^2) = 15
Площадь: S = 8*15/2 = 60
б) Из условия имеем, что DK - и биссектриса и медиана. Значит DEF - равнобедренный. DF = DE = 17, EF = 8
Полупериметр: р = (8+17+17)/2 = 21
Площадь:
S = кор(21*13*4*4) = 4кор273 (примерно 66)
в) Из условия имеем, что биссектриса DK является еще и срединным перпендикуляром. Значит треугольник DEF - равнобедренный. DE= DF=17
Далее решение аналогично п.2.
ответ: 4кор273 = 66 (примерно).
P.S. В 1) и 2) мы воспользовались тем, что прямая и точка, не прин. этой прямой - задают плоскость и притом только одну. Если же говорят о 2 и более плоскостях, значит точка лежит на этой прямой. В 3) мы воспользовались утверждением, что прямая может пересечь плоскость только в одной точке.