1,5
Объяснение:
Рівняння АВ у=-0,25+2,5
(x - xa) /(xb - xa) = (y - ya)/ (yb - ya)
Подставим в формулу координаты точек:
x - (-2) 6 - (-2) = y - 3 1 - 3
В итоге получено каноническое уравнение прямой:
(x + 2)/ 8 = (y - 3)/ -2
Из уравнения прямой в каноническом виде получим уравнение прямой с угловым коэффициентом:
y = -0.25x + 2.5
середня крапка М(2;2)
х м=0,5(хв-ха)=0,5*(6-(-2))/2=2
Рівняння перпендикулярної прямій у=4х-6
Найдем уравнение NМ, проходящее через точку М(2;2), перпендикулярно прямой y = -0.25x + 2.50
Прямая, проходящая через точку М0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:
Уравнение прямой :
y = 4x -6 или 0.25y -x +1.5 = 0
Данное уравнение можно найти и другим . Для этого найдем угловой коэффициент k1 прямой .
Уравнение AB: , т.е. k1 = -0.25
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1.
Подставляя вместо k1 угловой коэффициент данной прямой, получим:
-0.25k = -1, откуда k = 4
Так как искомое уравнение проходит через точку NМ и имеет k = 4,то будем искать его уравнение в виде: y-y0 = k(x-x0).
Подставляя x0 = 2, k = 4, y0 = 2 получим:
y-2 = 4(x-2)
или
y = 4x -6
визначимо х за у=0 х=6/4=1,5
варианте) и на полученной второй его стороне откладываем отрезок
АВ, равный данной гипотенузе. Из точки В опускаем перпендикуляр на
прямую "а". Для этого:
Из точки В проводим окружность любого радиуса R, чтобы пересекла
прямую "а" в точках G и Q. Из точек G и Q тем же радиусом проводим
две дуги, пересекающиеся в точке M. Прямая ВМ - искомый перпендикуляр.
На пересечении прямых ВМ и "а" ставим точку С.
Соединяем точки А,В и С и получаем прямоугольный треугольник АВС
с прямым углом <C и с заданными гипотенузой и острым углом.
2. На прямой "а" откладываем отрезок, равный одной из сторон, например, АС. Проводим окружности с центрами в точках А и С радиусами, равными двум другим сторонам, например, АВ и СВ соответственно. В точке пересечения этих окружностей получаем точку В. Треугольник построен.
3. На прямой "а" откладываем отрезок, равный стороне АВ, к которой проведена высота СН. Проводим окружность радиуса ВС с центром в точке В. Из точки В к прямой "а" восстанавливаем перпендикуляр и на нем откладываем отрезок ВР, равный высоте СН. Из точки Р проводим перпендикуляр к отрезку ВР и в точке пересечения этого перпендикуляра с проведенной ранее окружностью ставим точку С.
Соединив точки А,С и В получаем искомый треугольник.
P.S. Построение перпендикуляра к прямой в заданную точку не описываю - это стандартное построение.