Построим высоту ВН. В равнобедренном треуг-ке высота, проведенная к основанию, является также и медианой. Поэтому АН=СН=4√3 : 2= 2√3 см По теореме Пифагора в прямоугольном треуг-ке АНВ находим катет ВН: BH=√AB²-AH²=√16-12=√4=2 см Катет ВН в прямоугольном треугольнике, равный половине гипотенузы АВ, лежит против угла в 30° (по свойству прямоугольных треугольников). Значит <A=30° Поскольку углы при основании равнобедренного треуг-ка равны, то <C=<A=30° Зная сумму углов треуг-ка, находим угол В: <B=180-30*2=180-60=120°
<BAC = <DCB = 60 => <ABC = <ADC= 120 => <ABD = <ADB = 60 (диагональ ромба - биссектриса)В треугольнике ABD все углы равны по 60 => этот треугольник - равносторонний => AB = AD = BD = 18.
Проведем диагональ AC.
Диагонали ромба точкой пересечение делятся пополам => BO = OD = 9, AO = OC (O - точка пересечения диагоналей BD и AC).
Так как диагонали ромба пересекаются под прямым углом, треугольник AOD - прямоугольный.
По теореме Пифагора: 324 - 81 = 243 => AO = = => AC = =