Если соединить центры этих окружностей с основанием высоты, то эти отрезки будут биссектрисами прямых углов, которые высота образует с гипотенузой. Поэтому они перпендикулярны. Поскольку при этом длины касательных от основания высоты к обеим окружностям равны радиусам, то расстояния от него до центров равны величине диагонали квадрата со стороной r1 и r2. Искомое расстояние (в квадрате) отсюда равно (√2*r1)^2 + (√2*r2)^2 = 2*(r1^2 + r2^2); Для треугольника с катетом 1 и углом в 30° стороны равны 1, √3 и 2. Отсюда r = (1 + √3 - 2)/2 = (√3 - 1)/2; это радиус окружности, вписанной в АВС. Коэффициенты подобия для треугольников равны 1/2 и √3/2 (у одно из треугольников меньший катет - это высота АВС, равная √3/2, а у другого эта высота - больший катет, откуда меньший равен 1/2). поэтому r1 = r/2; r2 = r√3/2; легко видеть, что искомое расстояние d = √2*r (треугольник, образованный отрезками соединяющими центры с основанием высоты и между собой, оказался тоже подобный исходному, то есть в нем гипотенуза в 2 раза больше меньшего катета, равного √2*r1 = √2*r/2; ответ d = √2*(√3 - 1)/2
Линейной функцией называется функция вида y=kx+b а) у = 2х и у = 2х – 4 - графики параллельны, поскольку их угловые коэффициенты (k) равны, следовательно, они не пересекаются и не имеют общих точек. б) у = х + 3 и у = 2х – 1 - графики пересекаются, поскольку их угловые коэффициенты различны. Найдем точку пересечения, приравняв правые части: х + 3 = 2х – 1 x=4, y=4+3=7. Координаты точки пересечения - (4;7). в) у = 0,5х + 8 и у =21х + 8 - графики пересекаются, поскольку их угловые коэффициенты различны. Поскольку и в первом, и во втором случае b=8, то точка пересечения графиков - (0,b) - (0;8). г) у = 2х – 2 и у = -0,5х + 3 - графики пересекаются, поскольку их угловые коэффициенты различны. Найдем точку пересечения, приравняв правые части: 2х – 2 = -0,5х + 3 2,5x=5 x=2, y=2*2-2=2. Координаты точки пересечения - (2;2).
Это средняя линия треугольника, что сложного то?