:(
Биссектриса "разрезает" треугольник на два. Условно назвав их "левый" и "правый", легко видеть что в подобных треугольниках "сходственные" биссектрисы порождают две пары подобных треугольников. "Левый" из разрезанных подобен "левому", а "правый" - "правому". В самом деле, например, у "левых" треугольников есть по равному углу, оставшемуся от исходного, и равны углы, одной из сторон которых являются биссектрисы. То есть подобие по признаку равенства двух углов.
Кроме того, у "левых" треугольников одной из сторон является сторона исходного треугольника, а другой - биссектриса. Что автоматически означает их пропорциональность, то есть биссектрисы относятся так же как боковые стороны (и не важно, какая пара "сходственных" сторон - вполне достаточно показать для любой, раз они все пропорциональны с коэффициентом подобия).
Это все.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²