Каждая из высот, проведенных к боковым сторонам из вершин основания, образуют с основанием прямоугольные треугольники. У этих треугольников основание будет являться гипотенузой, а т. к. углы при основании равнобедренного треугольника равны (свойство углов при основании равнобедренного треугольника), то эти прямоугольные треугольники равны (по признаку равенства прямоугольных треугольников по гипотенузе и острому углу). Т. .к треугольники равны, то равны и все их элементы, а значит, и катеты (которые являются нужными высотами)
<ВАР=30⁰, <APB = 60⁰ в треугольнике АВР. Смежный угол <APC=120⁰
Треугольник АРС - равнобедренный (АР=РС по доказанному), РО - высота, медиана, биссектриса, т.е. <АРО=<СРО=60⁰, <РАО=30⁰ (сумма углов треугольника равна 180⁰)
<ВАД=90⁰, <ВАР=30⁰, <РАС=30⁰ <ОАТ=90-(30+30)=30⁰, значит <РАТ=60⁹
Получили, треугольник АРТ - равносторонний, т.к. <P=<A=<t=60⁰
Значит, РТ=АР=АТ=8см, Р(АРСТ)=8*4=32(см)
ответ:32см