Даны три точки. Известно, что AB = 3,7 см, AC = 5,6 см, BC= 1,9 см. Докажи методом от противного, что данные три точки лежат на одной прямой.
Объяснение: Предположим ,что точки A ,B и C не лежат на одной прямой ,т.е. ABC — ломаная , AB и BC — стороны или звенья ломаной. концы отрезков (точки A, B, C) — вершины ломаной.
тогда AB + BC должно получится больше AC ,но AB + BC=3,7 см+ 1,9 см = 5,6 см = AC . Получили противоречие ,значит предположение ( что данные три точки лежат на одной прямой) неверно . Они расположены на одной прямой.
Биссектриса делит катет на отрезки 4см и 5 см, значит весь катет равен 9 см. По свойству биссектрисы она делит сторону треугольника пропорционально соответствующим сторонам. Пусть коэффициет пропорциональности равен х (х>0), тогда катет равен 4х, а гипотенуза 5х. По теореме Пифагора (5х)² = (4х)² + 9² 25 х² = 16х² + 81 9х² = 81 х² = 9 х = 3 Значит второй катет равен 4 * 3 = 12 а гипотенуза 5 * 3 = 15 Радиус описанной окружности равен половине гипотенузы R = 15 : 2 = 7,5см 2) Предположим, что проекция катета равного 4 см на гипотенузу равна х см, тогда по соотношениям в прямоугольном треугольнике 4² = х * (х +6), получим квадратное уравнение х² + 6х - 16 = 0. по теореме обратной к теореме Виета. Получим корни х₁ = 2 и х₂ = -8(второй корень не подходит по условию задачи). Значит гипотенуза равна 2 +6 = 8 см, а высота h² = 2 * 6 = 12 h = √12 = 2√3cм
Даны три точки. Известно, что AB = 3,7 см, AC = 5,6 см, BC= 1,9 см. Докажи методом от противного, что данные три точки лежат на одной прямой.
Объяснение: Предположим ,что точки A ,B и C не лежат на одной прямой ,т.е. ABC — ломаная , AB и BC — стороны или звенья ломаной. концы отрезков (точки A, B, C) — вершины ломаной.
тогда AB + BC должно получится больше AC ,но AB + BC=3,7 см+ 1,9 см = 5,6 см = AC . Получили противоречие ,значит предположение ( что данные три точки лежат на одной прямой) неверно . Они расположены на одной прямой.