Дан ромб с острым углом α = 30° и радиусом вписанной окружности r = 3 см. Боковые грани пирамиды наклонены к плоскости основания под углом β = 60°.
В ромбе радиус вписанной окружности связан непосредственно со стороной через синус угла α. Сам радиус по определению представляет собой половину высоты ромба, которая равна стороне ромба, умноженной на синус угла α из образованного прямоугольного треугольника.
Высота в таком случае получается равна двум радиусам.
2r = a sinα.
Отсюда находим сторону а ромба и его периметр Р:
а = 2r/sinα = 2*3/0,5 = 12 см.
Р = 4а = 4*12 = 48 см.
Находим апофему А:
А = r/cos β = 3/cos 60° = 3/0,5 = 6 см.
Sбок = (1/2)РА = (1/2)*48*6 = 144 см².
Точка M, равноудалена от вершин треугольника ABC, поэтому она лежит на перпендикуляре к (ABC), который восстановлен из центра (O) описанной около ΔABC окружности. Треугольник со сторонами 6, 8, 10 является египетским (10²=6²+8²), поэтому ∠B=90°, а значит центр описанной лежит на середине AC. И её радиус равен AC:2=10:2=5.
Как было сказано ранее MO⊥(ABC).
Рассмотри прямоугольный ΔAOM (∠O=90°): AO=5; AM=13. Найдём второй катет MO (расстояние от M до α) по теореме Пифагора (хотя тут опять Пифагорова тройка 5, 12, 13).
MO=√(13²-5²) = √((13+5)(13-5)) = √(18·8) = √(3²·4²) = 12
ответ: 12.