Дано: ABCD - трапеция EF - средняя линия EO = 3 см OF = 4 см Найти: AB Решение. 1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам. 2) Рассмотрим треугольники EOD и ABD. Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD. Угол DBC общий. Следовательно, треугольник BOF подобен BDC. 3) Из подобия треугольников следует, что AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.
ответ: РМ=√3
Объяснение:
Медианы треугольника пересекаются в одной точке. Следовательно, отрезок СР - часть медианы из С, Продолжим ее до пересечения с АВ в точке К.
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины. ⇒ РК=СР:2=4:2=2.
Точка К - середина АВ. ⇒
АК=КВ=2.
Треугольник АКР равнобедренный ( АК=КР).
Из К опустим высоту КН на АР. Отрезок КН=АК:2=1 (свойство катета, противолежащего углу 30°).
Тогда АН=НР=КН•ctg30°=√3 ⇒ АР=2√3
По свойству медиан АР:РМ=2:1, поэтому РМ=0.5•2√3=√3