1.Пусть АВС равносторонний треугольник. Тогда
1) АВ=ВС=АС =6√3/3 =2√3
2) В равностороннем треугольнике центр вписанной и описанной окружности совпадают и есть точка О - точка пересечения медиан и все углы равны по 60 градусов
3) Проведём высоту ВК (она же и медиана) Тогда из треугольника АВК
ВК =АВ*sin60 = 2√3*√3/2 = 3см
4) Тогда по свойству медиан треугольника ОК =ВК/3 = 3/3 =1см = r
ответ r =1см
2.1) Получаем прямоугольный треугольник АВО
По Т Пифагора: ВА=корень(АО^2-OB^2) =корень(41^2-9^2) =корень(1600) =40
3. т.к. точка О является точкой пересечения серединных перпендикуляров, то все три перпендикуляра равны. АО=ОВ=ОС=10 см. следовательно, периметр ВОС=ВО+ВС+ОС=32
AB = c; AC = c*sin(α); BC = c*cos(α); α = угол ABC;
то есть sin(α) и cos(α) - коэффициенты подобия (то есть отношение соответственных сторон треугольников ACH и ABC равно sin(α), отношение соответственных сторон треугольников BCH и ABC равно cos(α))
Ясно, что и радиусы вписанных окружностей связаны той же пропорцией (а почему?)
r1 = r*sin(α); r2 = r*cos(α);
откуда
r^2 = (r1)^2 + (r2)^2;
Есть любопытное следствие. Если O, O1, O2 - центры этих трех окружностей, то OC = O1O2; : а вот докажите :