Среди полезных свойств трапеции есть и такое: Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности. Но не всегда нужное вспоминается во-время. Поэтому данное ниже решение - подробное. Рассмотрим рисунок трапеции АВСД, данный во вложении. Пусть К и Е - середины оснований, М и Н - середины боковых сторон. КЕ=12 МН=21 ∠ВАД=37° ∠СДА=53° Проведем из К к АД прямые КТ и КР параллельно боковым сторонам. Обозначим точки пересечения этих прямых и средней линии m и h По свойству параллельных прямых и секущей угол КТР= ∠ВАД=37° угол КРТ= ∠СДА=53° Сумма углов при основании ТР треугольника ТКР равна 37°+53°=90° ⇒ треугольник ТКР - прямоугольный. В нём ТЕ=АЕ-АТ ЕР=ЕД-РД, а так как АТ=ВК=КС=РД,то ТЕ=ЕР⇒ Е- середина ТР. ⇒ КЕ - медиана прямоугольного треугольника ТКР. Медиана прямоугольного трегольника, проведенная из вершины прямого угла, равна половине гипотенузы. ТЕ=КЕ=12. ТР=2*КЕ=24 Средняя линия mh треугольника ТКР равна половине ТР=12 Мm+hH=21-12=9 Мm+hH=BK+KC=BC ВС=9 АД=ТР+АТ+РД=ТР+ВС=9+24=33 ---------- [email protected]
Задача решается двумя Графически и алгебраически. приложение №1): Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см. Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см. Радиус 5/2=2,5 см.
приложение №2): Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника. Радиус описанной окружности - R=a/2sinα , где а - сторона треугольника, α - противолежащий угол. Рассматриваем треугольник НВС, где Н точка пресечения диагоналей. Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β). R=СД/2sinβ=2/sinβ; R=АВ/2sin(90-β)=3/2cosβ. Делим одно выражение на другое. 3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3 R=2/sin(atgβ)=2.499999=2.5 см.
Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
Но не всегда нужное вспоминается во-время. Поэтому данное ниже решение - подробное.
Рассмотрим рисунок трапеции АВСД, данный во вложении.
Пусть К и Е - середины оснований,
М и Н - середины боковых сторон.
КЕ=12
МН=21
∠ВАД=37°
∠СДА=53°
Проведем из К к АД прямые КТ и КР параллельно боковым сторонам.
Обозначим точки пересечения этих прямых и средней линии m и h
По свойству параллельных прямых и секущей
угол КТР= ∠ВАД=37°
угол КРТ= ∠СДА=53°
Сумма углов при основании ТР треугольника ТКР равна
37°+53°=90° ⇒
треугольник ТКР - прямоугольный.
В нём
ТЕ=АЕ-АТ
ЕР=ЕД-РД, а так как
АТ=ВК=КС=РД,то
ТЕ=ЕР⇒ Е- середина ТР. ⇒
КЕ - медиана прямоугольного треугольника ТКР.
Медиана прямоугольного трегольника, проведенная из вершины прямого угла, равна половине гипотенузы.
ТЕ=КЕ=12.
ТР=2*КЕ=24
Средняя линия mh треугольника ТКР равна половине ТР=12
Мm+hH=21-12=9
Мm+hH=BK+KC=BC
ВС=9
АД=ТР+АТ+РД=ТР+ВС=9+24=33
----------
[email protected]