6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
<АВМ=<АВС-<МВС=50-30=20°
<АСМ=<АСВ-<МСВ=50-10=40°
Рассмотрим треугольник ВМС:
<ВМС=180-<МВС-<МСВ=180-30-10=140°.
По теореме синусов МС/sin 30=BC/ sin 140
MC=BC*sin 30/sin 140=BC/2sin (180-40)=BC/2sin 40
Если в треугольнике АВС из вершины А опустить высоту АН на основание ВС, то она же будет и медиана и биссектриса. Из полученного треугольника АНС (<НАС=80/2=40°, <АНС=90°, НС=ВС/2) по теореме синусов
НС/sin 40=АC/ sin 90
АC=BC/2sin 40
Получается, что МС=АС, значит треугольник АМС - равнобедренный
<САМ=<АМС=(180-<ACM)/2=(180-40)/2=70°.