М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sokolovskaymasha
sokolovskaymasha
04.05.2023 22:34 •  Геометрия

Найти координаты и абсолютную величину вектора CM, если C(3;-5), M(7;5)​

👇
Ответ:
dzhulijamalish
dzhulijamalish
04.05.2023
Координаты: СМ(4;0) От вторых значений отнимаем первые
Величина: СМ= 4 см ( корень из суммы квадратов разницы двух координат)
Если что, спрашивайте в комментариях
4,6(4 оценок)
Открыть все ответы
Ответ:
MikassaSwag
MikassaSwag
04.05.2023

1)Пусть АВС-равнобедренный треугольник,АС-основание=12 см.

АВ=ВС=10 см

Проведем высоту ВН

Так как треугольник равнобедренный,то высота,проведенная к основанию,является и медианой,и биссектрисой.

Так как ВН-высота,то образуется прямоугольный треугольник АВН,причем из-за того,что ВН ещё и медиана,то АН=НС=12/2=6см.

Теперь по теореме Пифагора находим катет ВН

ВН=корень из(АВ^2-АН^2)

ВН=корень из(64)

ВН=8см

Sтреугольника АВС=(ВН*АС)/2

S=(8*12)/2

S=48 кв. см

ответ:48 кв.см.

2)параллелограмм ABCD 

Проведём из угла В на AD высоту BK. 

∆ABK-прямоугольный. ےА=30° 

Следовательно BK=AB:2, как катет, лежащий против угла 30° 

AB=12. Тогда BK=6; S=16×6=96 кв.см.

ответ:96 кв.см.

3)Дано:

АВСD-трапеция,

АВ=СD=13 см.

АD=20см

ВС=10см

Найти:S

Проводим высоту ВН,так как трапеция равнобедренная,то АН будет равен (20-10)/2=5 см

Образовался прямоугольный треугольник АВН,находим катет(высоту) ВН

ВН=корень из(АВ^2-AH^2)

ВН=корень из(169-25)

ВН=12 см.

S=((АD+ВС)/2)*ВН

S((20+10)/2)*12=180 кв.см.

ответ:180 кв.см

Подробнее - на -

Объяснение:

4,6(1 оценок)
Ответ:
софика4
софика4
04.05.2023
Радиусы вписанной в равнобедренный треугольник и описанной около равнобедренного треугольника окружности равны соответственно:

r = \dfrac{b}{2} \sqrt{ \dfrac{2a - b}{2a + b} } \\ \\ R = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } = \dfrac{a^2}{ \sqrt{(2a - b)(2a + b)} },
где a - боковая сторона, b - основание, r - радиус вписанной окружности, R- радиус описанной окружности.

Сделаем замену переменных, чтобы было легче преобразовывать.
Пусть t = 2a - b, \ \ z = 2a + b

2r = b \sqrt{\dfrac{t}{z} } \\ \\ R = \dfrac{a^2}{ \sqrt{tz} } \\ \\ \\ 3 = b \sqrt{\dfrac{t}{z} } \\ \\ \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{tz} }

Разделим первое уравнение на второе:

\dfrac{3}{ \dfrac{25}{8} } = \dfrac{b \sqrt{t} \sqrt{tz} }{ \sqrt{z}a^2 } \\ \\ \\
 \dfrac{24}{25} = \dfrac{bt}{a^2} 


Сделаем обратную замену:

\dfrac{24}{25} = \dfrac{b(2a - b)}{a^2} \\ \\ 
24a^2 = 50ab - 25b^2 \\ \\ 
24a^2 - 50ab + 25b^2 = 0 \ \ \ \ \ \ \ \ \ |: b^2 \\ \\ 
24 \dfrac{a^2}{b^2} - 50 \dfrac{a}{b} + 25 = 0

Пусть x = \dfrac{a}{b}

24x^2 - 50x + 25 = 0 \\ \\ 
D = 2500 - 25 \cdot 4 \cdot 24 = 100 = 10^2 \\ \\ 
x_1 = \dfrac{50 + 10}{24 \cdot 2} = \dfrac{60}{12 \cdot 4} = \dfrac{5}{4} \\ \\ 
x_2 = \dfrac{50 - 10}{24 \cdot 2} = \dfrac{40}{48} = \dfrac{5}{6}

Значит, боковая сторона относится к основанию как 5:4, либо как 5:6.

Обратная замена:

\dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } \\ \\ 
a = 1,25b \\ \\ 
 \dfrac{25}{8} = \dfrac{6,25b^2}{ \sqrt{4 \cdot 6,25b^2 - b^2 } } \\ \\ 
 \dfrac{25}{8} = \dfrac{25b^2}{16 \sqrt{25b^2 - b^2} } \\ \\ \\ 
1 = \dfrac{b^2}{2 \sqrt{24b^2} } \\ \\ 
2 = \dfrac{b^2}{2 \sqrt{6}b } \\ \\ 
4 = \dfrac{b}{ \sqrt{6} } \\ \\ 
b = 4 \sqrt{6} 

Получилось, что основание выражается иррациональным числом. Значит, данное значение не подходит.

Теперь решим второе уравнение:

\dfrac{a}{b} = \dfrac{5}{6} \\ \\ 
\dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } \\ \\ \\
 \dfrac{b}{a} = 1,2 \\ \\ 
\dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } \\ \\ 
b = 1,2a \\ \\ 
 \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - 1,44a^2} } \\ \\ 
\dfrac{25}{8} = \dfrac{a}{ \sqrt{2,56} } \\ \\ 
\dfrac{25}{8} = \dfrac{a}{1,6} \\ \\ 
a = 5 \\ \\ 
b = 1,2a = 6

Значит, боковая сторона равна 5 см, а основание - 6 см.
ответ: 5 см; 5 см; 6 см. 
4,7(26 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ