Согласно теореме Пифагора, второй катет
AC = √ (AB² - BC²) = √ (25² - 15²) = √ 400 = 20 см.
Тогда площадь треугольника
S = AC * BC / 2 = 20 * 15 / 2 = 150 см².
Радиус вписанной окружности
r = 2 * S / (a + b + c) = 2 * 150 / (15 + 20 + 25) = 300 / 60 = 5 см.
Радиус окружности, описанной вокруг прямоугольного треугольника, равен половине гипотенузы, то есть в данном случае R = AB / 2 = 25 / 2 = 12,5 см.
Пусть точка Е - середина стороны АС. Тогда по теореме Пифагора
ВЕ = √ (ВС² + СЕ²) = √ (ВС² + (АС/2)²) = √ (15² + 10²) = √ 325 ≈ 18,03 см.
Площадь полной поверхности - площадь основания+площадь боковой поверхности.
Площадь основания S(o) вычислим по формуле:
S=(а²√3):4
S(о)=(9√3):4
Площадь боковой поверхности Sб - по формуле
Sб=Р*(апофема):2
Основание высоты МО правильной пирамиды перпендикулярно основанию и лежит в центре вписанной окружности/
Апофему МН найдем из прямоугольного треугольника МОН.
Т.к. грань наклонена к плоскости основания под углом 45, высота пирамиды равна радиусу вписанной в правильный треугольник окружности, а апофема МН, как гипотенуза равнобедренного прямоугольного треугольника, равна с=а√2, т.е.ОН*√2
МО=ОН.
ОН=r=(3√3):6=(√3):2
МН=(√3):2)*√2=(√3*√2):2
Р=3*3=9
Sб=9*(√3*√2):2):2=9*(√3*√2):4 см²
Sполн=(9√3):4+(9*√3*√2):4
Sполн=9√3)(1+√2):4 или 2,25*(1+√2) ≈ 5,43 см²
----
bzs*