Sqrt-корень квадратный
Высота разделяет основание на 2 равные части и угол основание высоты равен 90 градусов.
Выплывает 2 треугольника: ABK и BKC, они равны.
Возьмем треугольник BKC(угол K=90,KC=3x,BC=11x).За теоремою Пифагора: 1764+9x^2=121x^2; 1764=112x^2;x^2=15,75;x=Sqrt(15,75)
r=S/p(p-полупериметр)
S=1/2*b*h=1/2*6*Sqrt(15,75)*42=126*Sqrt(15,75);
p=11*Sqrt(15,75)+11*Sqrt(15,75)+6*Sqrt(15,75)/2;
r=126*Sqrt(15,75)/11*Sqrt(15,75)+11*Sqrt(15,75)+6*Sqrt(15,75)/2
r=252*Sqrt(15,75)/11*Sqrt(15,75)+11*Sqrt(15,75)+6*Sqrt(15,75)
Дано:
Прямоугольный треугольник АВС
угол С = 90 градусов,
АВ — гипотенуза,
АВ = 8,
угол А = 45 градусов.
Найти площадь треугольника АВС, то есть S АВС — ?
1. Рассмотрим прямоугольный треугольник АВС. Сумма градусных мер углов треугольника равна 180 градусов. Тогда угол В = 180 - угол А - угол С;
угол В = 180 - 45 - 90;
угол В = 45 градусов.
Следовательно прямоугольный треугольник АВС является еще и равнобедренным, тогда АС = ВС.
2. По теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
АС^2 + ВС^2 = АВ^2 ( пусть АВ = ВС = х сантиметров);
х^2 + х^2 = 8^2 ;
2 * х^2 = 64;
х^2 = 64 : 2;
х^2 = 32.
3. S АВС = 1/2 * АС * ВС;
S АВС = 1/2 * 32;
S АВС = 16.
ответ: 16.