для нахождения радиуса строим два прямоугольных треугольника. первый: rcd и второй rbd
нам известно, что отрезок ac=20см, bc=12см, dc=17см.
так как rc=rb+bc; rb=ab/2; ab=ac-bc, получаем rc=(ac-bc)/2+bc=(20-12)/2+12=16см
по теореме пифагора находим катет rd=
применяем вновь теорему пифагора, для того чтобы найти гипотенузу db в треугольнике rbd
rb=ab/2; ab=ac-bc, получаем rb=(ac-bc)/2=(20-12)/2=4см
гипотенузу db так же является искомым радиусом окружности.
ответ: r=7см
ответ:
объяснение:
1. вк=ав/2, значит вк= 1/2, а вк перпендикульярна ад, следовательно угол а = 30 гр. (т.к. если катет равен половине гипотинузы то угол лежащий против этого катета равен 30 гр.)
угол а=углу с, т.к. авсд - параллелограмм.
угол авк=60 гр., а
угол в = 60+90=150 гр. угол в= углу д
2.
авсд-трапеция
ад-?
из вершины с проводим перпендикуляр се
решение
ав=вс=10(за условием)
ав=се=10(по свойству)
∠е=90° ⇒ ∠д=∠с=45°⇒δсед-прямоугольный(∠е=90°)
се=ед=10 ⇒ δсед-равнобедренный
ад=ае+ед(при условии)
ад=10+10=20 см
ад=20 см
3.
дано: ромб abcd
угол а = 31°
решение:
в ромбе диагонали являются биссектрисами =>
=> 31/2=15.5 - угол оаd
диагонали пересекаются под прямым углом =>
=> угол аоd = 90°
сумма углов треугольника равна 180° =>
=> 180-90-15.5=74.5° - угол аdo
отв: 74.5°, 90°, 15.5°
4
на фото
Объяснение:
Вектори с(1; 2; -4) i d(2; -5; a) перпендикулярны , если их скалярное произведение равно 0.
а*в=1*2+2*(-5)+(-4)*а
1*2+2*(-5)+(-4)*а=0
2-10-4а=0
-4а=8
а=-2