К прямой АВ проведены в разные полуплоскости перпендикуляры AM и ВК. Отрезки МК и АВ пересекаются в точке О. Докажите, что АОМ = ВОК, если известно, что АМ = ВК Только с применением признаков равенства прямоугольных треугольников.Все отдаю)
1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности,
угол A равен 470 . Найдите угол C и угол B.
2. AB и AC – отрезки касательных, проведенных к окружности радиуса 6 см. Найдите длинуOA и AC, если AB = 8 см.
3. Точки A и B делят окружность с центром O на дуги AMB и ACB так, что дуга ACB на 800меньше дуги AMB. AM – диаметр окружности. Найдите углы AMB, ABM, ACB.
4. Найдите радиус окружности, вписанной в треугольник, и радиус окружности, описанной около треугольника, стороны которого равны 16 см, 17 см и 17 см. Контрольная работа № 5 по теме: «Окружность» Вариант 2
1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности,
Дано: прямоугольный треугольник АВС;
угол С = 90;
СА = 3;
СВ = 4;
СН - высота.
Найти: СН - ?
1) рассмотрим прямоугольный треугольник АВС. Тогда по теореме Пифагора:
АС^2 + СВ^2 = АВ^2;
3^2 + 4^2 = АВ^2;
9 + 16 = АВ^2;
25 = АВ^2;
АВ = 5;
2) В прямоугольном треугольнике каждый катет - это среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу. Тогда
ВС = √( АВ * НВ);
4 = √( 5 * НВ) (возведем правую и левую часть в квадрат);
16 = 5 * НВ;
НВ = 16/5;
НВ = 3,2;
3) АС = √( АВ * НА);
3 = √( 5 * НА) (возведем правую и левую часть в квадрат);
9 = 5 * НА;
НА = 9/5;
НА = 1,8;
4) СН = √АН * НВ;
СН = √1,8 * 3,2;
СН = √5,76;
СН = 2,4.
ответ: 2,4.