6. ∆АВС- прямоугольные (<С=90).
<В=90°-<А=90-60=30°(по свойству острых углов в прямоугольном треугольнике) ==> по свойству катет, лежащий против угла в 30 градусов, равен половине гипотенузы ==>АС=½АВ==>АВ=2АС=2*4=8 (см)
ответ: АВ=8 см
7. по свойству высоты, проведенной в прямоугольном треугольнике из вершины прямого угла: СД=½АВ==> АВ=2СД=2*6=12 см
ответ: 12 см.
8. х- 1 часть
<А=2х <В=х
сумма А и В=90°
составим и решим уравнение:
2х+х=90
3х=90
х=30
<А=60° <В=30°==> по свойству: катет лежащий против угла в 30 градусов равен половине гипотенузы: ==>АС=½АВ=7 см
ответ: 7 см
OC ⊥ BM ( OC ⊥ BC ,где O центр малой окружности , BC касательная) ⇒ AM | | OC . MC/CB= AO/OB (обобщенная теорема Фалеса) .
2,4 /4 =r/(2R -r) ⇔ r=3R/4 (1) .
Из ΔBCO по теореме Пифагора :
OB² - OC² =BC² ;
(2R -r)² - r² = 4² ⇔ 4R(R-r) =16 ⇔ R(R-r) =4 (2).
R(R -3R/4) =4 ⇒ R =4. ⇒ r=3R/4 = 3.
AD =AC+CD.
AM =√(AB² -BM²) =√((2R)² -(MC+CB)² ) =√(8² -6,4²) =√(8 -6,4)(8 +6,4) =4,8.
AM можно вычислить по другому: AM/OC =MB/CB ⇔ AM/3 =6,4/4⇒
AM =4,8.
---
AC =√(BC² +AM²) =√(2,4² +4,8²) =√(2,4² +(2*2,4)²) = 2,4√5.
AC*CD = MC*BC ⇔ 2,4√5 *CD =2,4*4⇒ CD =4/√5 =4√5 / 5 =0,8√5.
AD =AC+CD= 2,4√5 + 0,8√5 =3,2√5 .