1. Да.
2. Да.
3. Нет.
4. Да.
5. Нет.
Объяснение:
Признак перпендикулярности прямой и плоскости:
если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна плоскости
1. Прямая, проведенная перпендикулярно двум диаметрам окружности, перпендикулярна плоскости окружности, так как диаметры пересекаются.
2. Прямая, проведенная перпендикулярно диагоналям прямоугольника , перпендикулярна плоскости прямоугольника, так как диагонали пересекаются.
3. Нельзя утверждать, что прямая, проведенная перпендикулярно основаниям трапеции , будет перпендикулярна плоскости трапеции, так как основания трапеции параллельны, т.е. не пересекаются.
4. Прямая, проведенная перпендикулярно сторонам ромба с общей вершиной , перпендикулярна плоскости ромба, так как стороны пересекаются.
5. Нельзя утверждать, что прямая проведенная перпендикулярно двум сторонам параллелограмма, перпендикулярна плоскости параллелограмма, так как это могут быть противолежащие стороны параллелограмма, а они параллельны.
Подробно.
Пусть данный ромб АВСД.
Высота ВН=12 см, диагональ ВД=13 см.
Стороны ромба равны.
Диагональ ромба делит его на два равных треугольника.
∆ АВД=∆ СВД.
Проведем в равнобедренном ∆ АВД высоту АМ к стороне ВД и высоту ВН к стороне АД.
В ∆ ВНД катет НД=5 ( отношение сторон из Пифагоровых троек 5,12,13, можно проверить по т.Пифагора).
ДМ=МВ=13:2=6,5 см, т.к. АМ высота и медиана равнобедренного треугольника ВАД.
Прямоугольные ∆ ВНД и ∆ АМД подобны - имеют общий острый угол при Д.
Из подобия следует:
АМ:ВН=ДM:ДH.
АМ•5=12•6,5
AM=15,6 см
S ∆ АВД=АМ•ВД/2
S АВСД= 2 S ∆ АВД.
S АВСД=АМ•ВД=15,6•15=202,8 см²