Средняя линия трапеции параллельна основаниям и равна их полусумме. Доказательство. Пусть дана трапеция АВСD и средняя линия КМ. Через точки В и М проведем прямую. Продолжим сторону AD через точку D до пересечения с ВМ. Треугольники ВСм и МРD равны по стороне и двум углам (СМ=МD, РВСМ=РМDР - накрестлежащие, РВМС=РDМР - вертикальные) , поэтому ВМ=МР или точка М - середина ВР. КМ является средней линией в треугольнике АВР. По свойству средней линии треугольника КМ параллельна АР и в частности АD и равна половине АР:
1) Точка пересечения медиан в остроугольном, прямоугольном и тупоугольном треугольниках находится внутри треугольника.
2) Точка пересечения высот в остроугольном треугольнике находится внутри треугольника.
Точка пересечения высот в прямоугольном треугольнике находится в вершине прямого угла.
Точка пересечения высот в тупоугольном треугольнике находится вне треугольника.
3) И в остроугольном, и в прямоугольном, и в тупоугольном треугольниках точка пересечения биссектрис лежит внутри треугольника. (Следствие того, что центром вписанной окружности в треугольник является точка пересечения биссектрис).
30см ,
40см,
50см.
Объяснение:
Р=120см
Соотношение сторон
3:4:5
Составим уравнение
3х+4х+5х=120см
12х=120см
х=120/12=10
3×10+4×10+5×10=120см
Р=30+40+50=120см