На сторонах правильного пятиугольника построены равносторонние треугольники. Докажите, что их вершины, лежащие вне пятиугольника, являются вершинами другого правильного пятиугольника
Осевым сечением цилиндра называется сечение цилиндра плоскостью, проходящей через ось вращения. Осевое сечения цилиндра –прямоугольник со сторонами равными диаметру основания и высоты цилиндра. для того чтобы найти угол наклона диагонали вначале найдем эту диагональ. Она является гипотенузой треугольника с катетами равными 6*2=12 см (диаметр основания цилиндра) и 5 см (высота) 12^2+5^2=144+25=169 Диагональ равна 13 см. Угол находим по формуле синуса: Синус искомого угла Sin A= 5/13= 0,3846 Соответственно угол наклона диагонали осевого среза к площади основания цилиндра равен ~ 22,61 градуса