М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ззвееррекк
ззвееррекк
21.10.2022 11:33 •  Геометрия

Проблема с написанием геометрии 5и

👇
Открыть все ответы
Ответ:
4fhfhiukhriu
4fhfhiukhriu
21.10.2022

Дано:

SABC - правильная треугольная пирамида

SO - высота      SO⊥(ABC)

AB = BC = AC = √10

SA = SB = 5

-------------------------------------------------------------------

Найти:

р(AS, BC) - ?

ΔABC - равносторонний, поэтому:

AO = AB/√3 = √10/√3 × √3/√3 = √30/3

SA² = SO² + AO² ⇒ SO = √SA² - AO² - теорема Пифагора

SO = √5² - (√30/3)² = √25 - 30/9 = √225-30/9 = √195/9 = √195/3

Теперь мы находим объем Пирамиды:

V = 1/3 × Sосн × SO = 1/3 × AB²√3/4 × SO = 1/3 ×(√10)²×√3/4 × √195/3 = 1/3 × 10√3/4 × √195/3 = 1/3 × 5√3/2 × √195/3 = 5√585/18 = 5×√9×65/18 = 5×3√65/18 = 15√65/18 = 5√65/6

Но с другой стороны можно и так записать формулу:

V = 1/3 × S(ΔBCS) × h (1), где h – искомое расстояние ⇒ р(AS, BC) = h

Проведем SM⊥BC ⇒ SM = h.

Так как ΔSMB - прямоугольный (∠SMB = 90°), тогда используется по теореме Пифагора:

SB² = SM² + MB² ⇒ SM = √SB² - MB² - теорема Пифагора

MB = BC/2 = √10/2

SM = √5² - (√10/2)² = √25 - 10/4 = √100-10/4 = √90/4 = √90/2 = √9×10/2 = 3√10/2

И теперь находим площадь ΔSBC:

S(ΔSBC) = 1/2 × SM × BC = 1/2 × 3√10/2 × √10 = 30/4 = 15/2

И теперь мы находим высоту из объема пирамиды (1):

V = 1/3 × S(ΔBCS) × h ⇒ h = 3V/S(ΔBCS) - нахождение высоты ΔSBC

h = 3 × 5√65/6 / 15/2 = 5√65/2 / 15/2 = 5√65/12 = √65/3 ⇒ SM = р(AS, BC) = h = √65/3

ответ: р(AS, BC) = √65/3

P.S. Рисунок показан внизу↓


В правильной треугольной пирамиде SABC (с вершиной S) сторона основания равна √ 10, а боковое ребро
4,7(65 оценок)
Ответ:
angelina459
angelina459
21.10.2022

21 см2

Объяснение:

1) Сначала найдём вырезанный прямоугольник внизу(его площадь):

2*1= 2 см2

2) Найдём площадь квадрата, до того как из него начали вырезать фигуры: 5*5= 25 см2

3) Найдём площадь вырезанного треугольника, для этого посмотрим на рисунок: длина верхней и боковой сторон должна быть по 5 см, а там 3см, следовательно, найдём стороны треугольника: 5-3=2см. Теперь узнаем его площадь по формуле прямоуг. треугольника:

S=½bh

b и h- стороны треугольника.

2*2:2= 2см2

4) Вот и финал. Из площади изначального квадрата вычитаем площади вырезанных фигур:

25-2-2= 21 см2

4,6(73 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ