Основание треугольника сечения - это диагональ d квадрата основания.
Она равна 18√2 см. Высота пирамиды делит её пополам.
Поэтому d/2 = 9√2 см.
Находим длины боковых рёбер L:
2L² = d².Отсюда L = √(d²/2) =d/√2 = 18√2/√2 = 18 см.
Находим высоту Н пирамиды:
Н = √(L² - (d/2)²) = √(18² - (9√2)²) = √(324 - 162) = √162 = 9√2 см.
(это можно было найти и короче: ведь сечение - равнобедренный прямоугольный треугольник и его высота равна половине гипотенузы).
Получаем ответ: V = (1/3)SoH = (1/3)*18*18*9√2 = 972√2 ≈ 1374,62 см³.
1. Дуга АВ окружности с центром в точке О равна 60º. Найти расстояние от точки А до радиуса ОВ, если радиус окружности равен 6 см.
Решение: Рассмотрим треугольник АВО, АО=ВО=6(т.к. обе прямые являются радиусом окружности) значит треугольник равнобедренный, т.к. угол АОВ=60º, значит углы при осноании равны=(180º-60º)/2=60º, из этого следует, что треугольник равносторонний, сторона АВ=6.
2.АВ и АС – хорды окружности. угол АВС=70º, дуга АВ=120º. Найдите градусную меру дуги АС.
Решение: из теоремы "Центральный угол всегда в два раза больше вписанного, опирающегося на ту же самую дугу." следует, что дуга АС=140º. Значит дуга СВ=360º-(120º+140º)=100º.
ответ: 5.
Объяснение:
Формула площади круга S=πR².
Если S=25π, то R=√25=5.