Сторона равностороннего треугольника AC длиной 62 см является диаметром окружности. Окружность пересекается с двумя другими сторонами в точках D и E. Определи длину DE.
1. АС и ВD пересекаются в точке Е. Т.к. ΔАВС иΔАDC равнобедренные, a ВЕ и ЕD проведены из вершины к основанию АС, то они являются медианами, высотами и биссектрисами. Значит АС перпендикулярно ВD. Т.к. АВ=ВС=AD+2 и АD=DC, то периметр АВСД равен Р=2АВ+2АD=2(АD+2+AD)=4AD+4 4AD+4=20 AD=4 см АВ=4+2=6 см
2. Рассмотрим ΔАQC и ΔВРD: в них по условию АС=BD, CQ=PD и АQ=PB (AB разделен на 3 равные части). Следовательно эти треугольники равны по третьему признаку (по 3 сторонам), тогда и углы у них равны. <CQA=<DPB=140/2=70
Пусть АВС - равнобедренный треугольник с вершиной А, основанием ВС, известными боковыми сторонами AB=AC= a (см). BD - известная медиана, проведенная к боковой стороне АС. В равнобедренном треугольнике медианы, проведенные к боковым сторонам, равны. BD=CE= b (cм) Медианы равнобедренного треугольника пересекаются в одной точке О (центре тяжести треугольника), которая делит каждую из них в отношении 2:1, считая от угла, из которого они исходят ⇒ BO=CO= b* 2/3 = 2b/3 DO=EO=b * 1/3 = b/3 Строим треугольник. Чертим отрезок AB, равный а см. Находим середину этого отрезка и отмечаем точку Е. Раствором циркуля, равным EO, чертим дугу окружности с центром в точке Е. Раствором циркуля, равным ВО, чертим дугу окружности с центром в точке В. Дуги пересекутся в точке О, которая является центром тяжести данного треугольника. Из точки Е через точку О чертим отрезок CE, равный известной медиане (b). Соединяем точки A, B, C. Получаем искомый треугольник
Т.к. ΔАВС иΔАDC равнобедренные, a ВЕ и ЕD проведены из вершины к основанию АС, то они являются медианами, высотами и биссектрисами. Значит АС перпендикулярно ВD.
Т.к. АВ=ВС=AD+2 и АD=DC, то периметр АВСД равен
Р=2АВ+2АD=2(АD+2+AD)=4AD+4
4AD+4=20
AD=4 см
АВ=4+2=6 см
2. Рассмотрим ΔАQC и ΔВРD: в них по условию АС=BD, CQ=PD и АQ=PB (AB разделен на 3 равные части). Следовательно эти треугольники равны по третьему признаку (по 3 сторонам), тогда и углы у них равны.
<CQA=<DPB=140/2=70