Королевский пингвин, житель Антарктиды. Похож на императорского пингвина, но немного мельче его размерами и ярче окраской. Длина тела королевского пингвина составляет от 91 см до 1 м. Взрослые птицы имеют серую спину, по бокам чёрной головы и на груди крупные яркие оранжевые пятна. Брюхо белое. Птенцы бурого цвета. Живут королевские пингвины большими шумными колониями, насчитывающими несколько десятков тысяч пар. Колонии располагаются на больших, покрытых редкой растительностью равнинах. Социальной иерархии в них как таковой нет, но за места в центре колонии птицы конкурируют.
Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек (а || )
Признак параллельности прямой и плоскости.
Теорема. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
Замечания.
Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой. Если одна из двух параллельных прямых параллельна данной плоскости, а другая прямая имеет с плоскостью общую точку, то эта прямая лежит в данной плоскости. Выводы.
Случаи взаимного расположения прямой и плоскости:
а) прямая лежит в плоскости; б) прямая и плоскость имеют только одну общую точку; в) прямая и плоскость не имеют ни
Определение. Две плоскости называются параллельными, если они не имеют общих точек.
Параллельность плоскостей и обозначается так: || . Рассмотрим признак параллельности двух плоскостей.
Теорема. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Случаи взаимного расположения плоскостей:
плоскости и параллельны. Свойства параллельных плоскостей:
1. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
2. Отрезки параллельных прямых, заключённые между параллельными плоскостями, равн