Диагонали трапеции делят ее на 4 треугольника. Треугольники, прилегающие к основаниям трапеции, подобны по первому признаку подобия: "Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны", т.к <CAD=<ACB, а <BDA=<DBC как внутренние накрест лежащие при параллельных прямых AD и ВС и секущих АС и ВD соответственно. Итак, треугольники АОD и СОВ подобны с коэффициентом подобия ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7. ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.
площадь АВС=1/2*АВ*АС*sin30=1/2*6*10*1/2=15, АС в квадрате=АВ в квадрате+АС в квадрате-2*АВ*АС*cos30=36+100-2*6*10*корень3/2=136-60*корень3, АС=корень(136-60*корень3), периметр=6+10+корень(136-60*корень3)=16+корень(136-60*корень3), можно провести высоту на АС, тогда треугольник АВН прямоугольный, ВН=1/2АВ=6/2=3, АН=корень(АВ в квадрате-ВН в квадрате)=корень(36-9)=3*корень3, НС=АС-АН=10-3*корень3, треугольник ВНС прямоугольный, ВС=корень(ВН в квадрате+НС в квадрате)=корень(9+100-60*корень3+27)=корень(136-60*корень3) и периметр такой же, только ответ что то не нравится
а=1, b= -3, c= 3
Объяснение: