Из прямоугольных ∆ СВВ1 и ∆САА1 с общим острым углом С
cos C=В1С:ВС=А1С:АС
По первой лемме о высотах –
(Если в треугольнике ABC нет прямого угла, AA1 и BB1 – его высоты, то ∆ А1В1С подобен ∆ ABC., т.е. если соединить основания двух высот, то образуется треугольник, подобный данному)⇒
∆ А1В1С подобен ∆ АВС.
Случай 1)
∆ АВС остроугольный. Из подобия треугольников следует отношение:
А1B1:АB=В1С:ВС=cosC
cosC= 2√3:4=√3/2 ⇒ угол С=30°
2)
∆АВС тупоугольный и угол С >90°:
по первой лемме о высотах ∆ А1В1С подобен ∆ АВС.
Косинус угла, смежного с углом С, равен
А1С:АС=В1С:ВС=cos ACA1
cos ACA1=А1В1:АВ=2√3:4=√3/2, угол АСА1=30°, ⇒
угол С=180°-30°=150°
Таким же образом находится величина острого угла С в тупоугольном ∆ АВС, где тупой угол – ∠А или ∠В.
————————————
3) Можно угол С найти по т.синусов.
Так как. ∆АВВ1 и АА1В1 прямоугольные с общей гипотенузой АВ, можно провести окружность около четырехугольника АВА1В1. Треугольник АВВ1 - вписанный.
По т. синусов
2R=AB=4 ⇒
. Это синус 60°, и тогда
угол С=30°.
Этот решения применим и в случае тупоугольного ∆ АВС.
Сумма углов тр-ка равна 180 гр, значит уг.В = 180 -60 - 60 = 60гр.
Все углы тр-ка одинаковые, значит тр-к АВС - равносторонний,
и АВ =АС =ВС = 12,8см
Найдём высоту тр-ка АВС: h = AB·sin 60 = 12.8 · 0.5√3 = 6.4√3 cм
Площадь тр-ка АВС S = 0.5 AC· h = 0.5 · 12.8 · 6.4√3 = 40.96√3 cм²
ответ: 40,96√3 см²
2) Полупериметр тр-ка р = 0,5(5 + 4 +√17) = 4,5 + 0,5√17
р-а = 4,5 + 0,5√17 - 5 = -0,5 + 0,5√17
р - b = 4,5 + 0,5√17 - 4 = 0,5 + 0,5√17
р - с = 4,5 +0,5√17 - √17 = 4,5-0,5√17
Площадь тр-ка равна S = √(p - a)(p - b)(p - c)/p =
= √(-0.5 + 0.5√17)(0.5 + 0.5√17)(4.5 - 0.5√17)/ (4.5+ 0.5√17)
= √(0.25·17 - 0.25)(4.5² - 0.25·17)/(4.5 + 0.5√17)² =
= √(0.25·16·16)/(4.5 + 0.5√17)² = 8/(4.5 + 0.5√17
ответ: 8/(4,5 + 0,5√17)