Сумма боковых сторон равнобедренного треугольника равна его периметру без основания:
16-6=10.
Каждая сторона - 10:2=5.
Опустив высоту из вершины на основание, получим два прямоугольных треугольника с катетами, равными половине основания и высоте, и гипотенузами - боковым сторонам треугольника.
Это - так называемые египетские треугольники.
В египетском треугольнике отношение катетов и гипотенузы
3:4:5
Один из катетов 3,
гипотенуза 5,
второй катет (здесь это высота)=4.
Площадь треугольника
4*6:2=12 см²
Примечание:
Существует множество отношений сторон (так называемые тройки Пифагора), сумма квадратов катетов которых дает квадрат целого числа. Например, 5:12:13
Расстояние от точки М (на биссектрисе) до стороны угла измеряется длиной перпендикуляра, опущенного из этой точки на сторону угла.
∠МАО=∠МВО=90°
∠АОМ=∠ВОМ, так как ОМ- биссектриса.
Соответственно
∠АМО=90°-∠АОМ
∠ВМО=90°-∠ВОМ- как острые углы прямоугольного треугольника
Можем утверждать, что ∠АМО=∠ВМО,
По второму признаку равенства треугольников: сторона и два прилежащие к не угла( ОМ- общая, ∠АМО=∠ВМО и ∠АОМ=∠ВОМ)
ΔАОМ=ΔВОМ. В равных треугольниках против соответственно равных углов лежат равные стороны, отсюда МА=МВ, что и требовалось доказать