ответ: Мдя.
Объяснение:
Отметьте неверные утверждения:
если три угла одного треугольника равны трем углам другого треугольника, то такие треугольники равны;
Среди трех признаков равенства треугольников нет ни одного, в котором не говорилось бы хотя бы об одной стороне.
треугольники равны:
а) По двум сторонам и углу между ними
б) По стороне и прилегающим к нему двум углам
в) По трем сторонам.
Утверждение неверное. Такие треугольники подобны.
два равнобедренных треугольника с равными углами при основании равны;
Нет стороны - нет равенства. Эти треугольники подобны.
Утверждение неверное.
если сторона и два угла одного треугольника равны стороне и двум углам другого треугольника, то такие треугольники равны;
Эти углы должны прилегать к стороне, а здесь об этом ни слова!
Утверждение неверное.
равносторонние треугольники с равными периметрами равны.
Тогда сторона каждого из этих треугольников равна периметр деленный на 3. То есть три стороны одного треугольника равны трем сторонам другого треугольника.
Утверждение верное.
ХироХамаки Новичок
(решение в файле)
2. Условие задачи 2. неточное. Должно быть:
Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α.
ВО - искомое расстояние.
ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах.
∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника)
ΔАВН: по теореме Пифагора
ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4
ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6.