Вписываем в исходный треугольник окружность с центром О, проводим касательные перпендикулярно биссектрисам двух острых углов исходного треугольника (на рисунке ST и UV). Эти касательные отрезают два остроугольных треугольника AST и UVC (т.к равнобедренные треугольники с острым углом противолежащим основанию являются остроугольными). В центральном 5-угольнике все его внутренние углы тупые (кроме, может быть угла B). Соединяем вершины этого 5-угольника с центром О. Полученные пять треугольников остроугольные, потому что проведенные отрезки - биссектрисы углов 5-угольника, а биссектрисы делят любой угол на два острых, причем, если угол был тупой, то его половина больше 45 градусов, т.е. это означает что углы при вершине О, острые.
P.S. Можно доказать, что меньше, чем на 7 остроугольных треугольников разрезать нельзя.
Если стороны BC = а (считаем эту сторону основанием), AC = b и AB = c, то периметр равен 2*p = (a + b +c);
Отрезок PQ = t = 2,4; точка Р на стороне b, Q на стороне c.
Точки касания вписанной окружности стороны ВС - точка M, стороны АС - точка К, стороны АВ - точка Е.
Точка касания вписанной окружности отрезком PQ - точка Т.
Если обозначить отрезки от вершин до точек касания ВЕ = ВМ = x, СК = СМ = y и АК = АЕ = z, то
a = x + y;
b = x + z;
c = y + z;
Периметр меньшего треугольника (который отсечен заданным отрезком касательной) равен 2*z, поскольку РК = РТ; и QE = QT.
Отсюда легко видеть, что ПОЛУпериметр отсеченного треугольника равен p - a; (по условию, р = 10)
Поскольку эти треугольники подобны (исходный и отсеченный отрезком касательной), то ПОЛУпериметры относятся так же как стороны, и
(p - a)/p = t/a;
(10 - a)/10 = 2,4/a;
это легко привести к виду
a^2 - 10*a + 24 = 0;
a = 4 или 6.
Получилось 2 решения. :(