Векторы AD и BC равны, так как они равны по модулю, коллинеарны (стороны прямоугольника) и сонаправлены. Значит вектор BK = (3/7)*b, а вектор KC = (4/7)*b (так как ВС=ВК+КС=3х+4х=7х, тогда ВК=(3/7)*ВС, а KC = (4/7)*ВС). Поскольку сумма двух векторов (второй из конца первого) равна вектору, направленному от начала первого к концу второго, то AK=AB+BK = a+(3/7)*b, DK=DC+CK = a - (4/7)*b (так как вектор DC равен вектору AB, а вектор CK = -KC, поскольку направлен в противоположную сторону). ответ: AK = a+(3/7)*b, DK = a - (4/7)*b.
ответ:
дана прямая а и точка м, не лежащая на ней.
проводим дугу с центром в точке м (черная), произвольного радиуса, большего расстояния от точки м до прямой.
получили две точки пересечения дуги и прямой а. обозначим их а и в.
теперь построим две окружности (красных), с центрами в данных точках, произвольного одинакового радиуса (большего половины отрезка ав).
точки пересечения этих окружностей назовем к и н.
проводим прямую кн.
кн - искомый перпендикуляр к прямой а.
доказательство:
если точка равноудалена от концов отрезка, значит она лежит на серединном перпендикуляре к отрезку.
ак = кв как равные радиусы, значит к лежит на серединном перпендикуляре к отрезку ав.
ан = нв как равные радиусы, значит н лежит на серединном перпендикуляре к отрезку ав.
кн - серединный перпендикуляр к отрезку ав.
ма = мв как равные радиусы черной окружности, значит и точка м лежит на прямой кн, т.е. перпендикуляр к прямой а проходит через точку м.