SOS (можно с объяснением)
1.Точки K, L, M лежат на одной прямой, точка N не лежит на ней. Через каждые три точки
проведена одна плоскость. Сколько различных плоскостей при этом получилось?
а) 1; б) 2; в) 3; г) бесконечно много.
2.Через вершину С параллелограмма ABCD и точку М, не лежащую в плоскости
параллелограмма, проведена прямая СМ. Чему равен угол между прямыми АВ и МС, если угол
МСD равен 100˚?
а) 100˚; б) 80˚; в) 130˚; г) 50˚.
3.Из точки М к плоскости α проведены две наклонные, длины которых
относятся как 13 : 15 . Их проекции на эту плоскость равны 10 см и 18
см . Найдите расстояние от точки М до плоскости α.
а) 34см; б) 24см; в) 32см; г) 23см.(рисунок в закрепе)
Объяснение:
Найдем длины сторон треугольника по формуле:
d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}d=(x2−x1)2+(y2−y1)2
а)
\begin{gathered}|AB|=\sqrt{(2-1.5)^2+(2-1)^2}=\sqrt{1.25}=0.5\sqrt{5}\\ |AC|=\sqrt{(2-1.5)^2+(0-1)^2}=\sqrt{1.25}=0.5\sqrt{5}\\ |BC|=\sqrt{(2-2)^2+(0-2)^2}=\sqrt{4}=2\end{gathered}∣AB∣=(2−1.5)2+(2−1)2=1.25=0.55∣AC∣=(2−1.5)2+(0−1)2=1.25=0.55∣BC∣=(2−2)2+(0−2)2=4=2
Периметр треугольника АВ:
P_{ABC}=AB+BC+AC=0.5\sqrt{5}+0.5\sqrt{5}+2=2+\sqrt{5}PABC=AB+BC+AC=0.55+0.55+2=2+5
б) тут вопрос не совсем понятен, скорее всего длину медианы АМ:
Координаты точки M найдем по формулам деления отрезка пополам.
\begin{gathered}x_M=\dfrac{x_B+x_C}{2}=\dfrac{2+2}{2}=2\\ \\ y_M=\dfrac{y_B+y_C}{2}=\dfrac{2+0}{2}=1\end{gathered}xM=2xB+xC=22+2=2yM=2yB+yC=22+0=1
Длина медианы АМ:
|AM|=\sqrt{(2-1.5)^2+(1-1)^2}=\sqrt{0.5^2}=0.5∣AM∣=(2−1.5)2+(1−1)2=0.52=0.5