Сделаем рисунок. АВ - общая касательная. IJ- отрезок, соединяющий центры. О - точка пересечения этого отрезка и касательной. IA - радиус большей окружности, JB - радиус меньшей окружности. Вариант решения 1) Как радиусы, проведенные в точку касания, IA и JB перпендикулярны касательной АВ. Прямоугольные треугольники OIA и OJB подобны по двум углам - прямому и вертикальному при О. Все стороны этих треугольников имеют коэффициент подобия k=m:n ⇒ IA:JB=m:n Ясно, что отношение диаметров данных окружностей равно отношению их радиусов, т.е. АС:ВD=m:n.
Вариант решения 2) СА ⊥АВ BD ⊥АВ ⇒ СА и BD- параллельны. Углы С и D равны как накрестлежащие при пересечении параллельных прямых секущей.. Углы при О равны, как вертикальные. Треугольники АСO и DBO подобны по трем углам. OI OJ- медианы этих треугольников. Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия. Следовательно, отношение диаметров данных окружностей ( гипотенуз треугольников) равно отношению их медиан, т.е. АС:ВD=m:n.
сторони трикутника відносяться як 5: 6: 7, а периметр=36см
нехай х- коефіцієнт пропорційності, тоді
5х+6х+7х=36см
х=2см
тоді сторони даного трикутника:
5*2см=10см
6*2см=12см
7*2см=14см
за властивістю середньої лінії трикутника, що сполучає середини двох його сторін та дорівнює половині третьої сторони:
10см: 2=5см,
12см: 2=6см,
14см: 2=7см
5см,6см, 7см - сторони трикутника, вершини якого є середини сторін даного трикутника, відповідно його периметр
5см+6см+7см=18см
відповідь: 5см, 6см, 7см - сторони;
18см - периметр.