АВСД - равнобедренная трапеция, ВС=2см, АД=6см, угол А=α.
Проведем высоту ВН. Так как трапеция равнобедренная, то
АН=(АД-ВС)/2=(6-2)/2=2см.
В прямоугольном треуг-ке АНВ ВН=АН*tgα=2tgα.
Площадь трапеции равна полусумме оснований, умноженное на высоту:
S=(АД+ВС)*2tgα/2=8tgα (см^2)
1. Найдите площадь равнобедренного треугольника по боковой стороне и высоте, опущенной на основание, которые равны соответственно 5 см и 2 см.
1/2 основания = √(5^2-2^2)=√21
основание = 2√21
площадь= 1/2 основание*высота = 1/2*2√21*2=2√21 см2
ответ 2√21 см2
2
3
4
Из правил сервиса: "Пользователи признают, что задания, которые содержат большое количество задач, требующих решения, должны быть разделены на два или несколько заданий и в таком виде добавлены в Сервис для других Пользователей. То есть в одном задании не может быть несколько задач".
Если трапеция равнобедренная, то из вершин малого основания можно провести перпендикудяры к бОльшему основанию.
Тогда получается, что слева и справа от перпендикуляров будут треугольники, одна из сторон которых будет равна 2 см.
Угол неизвестен (или не указан?).
Если так, то высоту трапеции можно найти через тангенс.
Тангенс - это отношение противолежащего катета к прилежащему.
х - высоты. 2 см - катет треугольника
х\2=tg альфа => х=2 tg альфа.
после нахождения высоты можно найти и площадь трапеции.
S=(а1+а2)\2 *h - полусумма оснований умноженная на высоты трапеции.