7 задание.
дано :
треугольник р/б.
Р=20см
АС=4см
найти :
сторону АВ
т.к ВС - высота (угол при прямой D)
и медиана АС=СD
1)4см+4см=8см основание
АВ=ВD, т.к треугольник р/б (равнобедренный)
2)20см-8см=12см сумма равных сторон
3) 12см:2=6см равные стороны
ответ : АВ = 6см
8 задание.
дано :
треугольник р/б
Р=32см
АВ-DC=4см
найти : ВС
тут можно решить уравнением
возьмем DC за х
(х+4)+(х+4)+2х=32
(объясняю:
х+4
чтоб найти DC надо к DC прибавить 4 в результате чего получается АВ
2х
это 2 × х, т.к мы взяли DC за х
х+4+2х это сумма половины основания и одной стороны, по этому дублируем, то есть получается
(х+4)+(х+4)+2х=32
32 это периметр)
решаем уравнение
1) (х+4)+(х+4)+2х=32
2х+8+2х=32
4х=24
х=24:4
х=6 это мы нашли DC
2) DC=AD, т.к DB биссектриса
6+6=12 основание
3) периметр - основание = сумма сторон
Ртреугольника-АС= АВ+ВС
32-12=20 сумма сторон АВ+ВС
4) АВ=ВС
20:2=10 AB и BC
ответ : ВС =10см
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.