Задание 2. а)Угол КАВ, образованный касательной АК и хордой АВ, проходящей через точку касания А, равен половине величины дуги АВ, заключённой между его сторонами, центральный угол АОВ тоже опирается на дугу АВ, а угол АСВ- вписанный угол, опирающийся на дугу АВ, поэтому равен половине величины центрального угла.
б)Т.о., углы АСВ и КАВ равны. А т.к. АК и КВ - отрезки касательных, проведенных из одной точки к одной окружности, то АК=КВ, т.е. ΔКАВ- равнобедренный.
в) т.к. по условию АС║КВ, то по свойству внутренних накрест лежащих при указанных параллельных прямых и секущей АВ ∠АВК=∠ВАС. значит, по двум углам треугольники КАВ и АСВ подобны, значит, сходственные стороны у них пропорциональны. АВ/ВС=АК/АС=к- коэффициент пропорциональности , Площадь треугольника АВС равна ВС*АС*sin∠ACB; площадь треугольника КАВ равна
АК*АВ*sin∠КАВ. Синусы равных углов равны. Отношение площадей (АК*АВ*sin∠КАВ)/(BC*АС*sin∠ACB)=АК*АВ/ВС*АС=к²; получается, что от угла не зависит отношение. Это для любого треугольника, а если к тому же треугольник АВС равнобедренный с основанием АВ, то все углы в нем по 60°, т.е. он получается равносторонним. т.е. угол и выбирать не надо по этому условию он уже определен. А из того, что угол равен 60°, следует равенство данных треугольников, значит, отношение их площадей равно единице.
№1. А)Не подходит, т.к. 180-(65+55)=60 Б)Не подходит, т.к. 180-(44+90)=46 В)Не подходит, т.к. 180-(80+30)=70 Г)Да, подходит, т.к. 180-80=100; 180-(100+40)=40. Следовательно треугольник равнобедренный. №2. 180:(5+4+3)=15 15*5=75 ответ: больший угол треугольника равен 75 градусов. №3 Треугольник ВМС-равнобедренный, т.к. ВМ=МС. Треугольник ВМА тоже равнобедренный, т.к. ВМ=АМ. Рассмотрим треугольник ВМА: Угол ВМА=180-28-28=124 (так как угля при основании равны 28 в данном случае). Углы ВМА и ВМС-смежные, значит ВМС=180-124=56. Следовательно, (180-56)/2=62. ответ: СВМ=62 №4. Расстояние от точки к до прямой АВ назовём КМ. Рассмотрим треугольник АКМ: Угол АМК=90. Т.к. катет КМ=9/18=1/2 АК, то угол КАМ=30. Так ка АК -биссектриса, то угол САК=углуКАМ=30. Рассмотрим треугольник АКС: 1)угол АСК=90 2) угол САК=30 Значит угол АКС=180-90-30=60. Углы АКВ и АКС -смежные, значит угол АКВ=180-угол АКС=180-60=120. ответ: 120.
Задание 2. а)Угол КАВ, образованный касательной АК и хордой АВ, проходящей через точку касания А, равен половине величины дуги АВ, заключённой между его сторонами, центральный угол АОВ тоже опирается на дугу АВ, а угол АСВ- вписанный угол, опирающийся на дугу АВ, поэтому равен половине величины центрального угла.
б)Т.о., углы АСВ и КАВ равны. А т.к. АК и КВ - отрезки касательных, проведенных из одной точки к одной окружности, то АК=КВ, т.е. ΔКАВ- равнобедренный.
в) т.к. по условию АС║КВ, то по свойству внутренних накрест лежащих при указанных параллельных прямых и секущей АВ ∠АВК=∠ВАС. значит, по двум углам треугольники КАВ и АСВ подобны, значит, сходственные стороны у них пропорциональны. АВ/ВС=АК/АС=к- коэффициент пропорциональности , Площадь треугольника АВС равна ВС*АС*sin∠ACB; площадь треугольника КАВ равна
АК*АВ*sin∠КАВ. Синусы равных углов равны. Отношение площадей (АК*АВ*sin∠КАВ)/(BC*АС*sin∠ACB)=АК*АВ/ВС*АС=к²; получается, что от угла не зависит отношение. Это для любого треугольника, а если к тому же треугольник АВС равнобедренный с основанием АВ, то все углы в нем по 60°, т.е. он получается равносторонним. т.е. угол и выбирать не надо по этому условию он уже определен. А из того, что угол равен 60°, следует равенство данных треугольников, значит, отношение их площадей равно единице.