ответ:Через дві твірні конуса, кут між якими β, проведено площину. Площа
бічної поверхні конуса дорівнює S. Знайдіть площу перерізу, якщо твірна
конуса утворює з висотою кут α.
Объяснение:Через дві твірні конуса, кут між якими β, проведено площину. Площа
бічної поверхні конуса дорівнює S. Знайдіть площу перерізу, якщо твірна
конуса утворює з висотою кут α.
Через дві твірні конуса, кут між якими β, проведено площину. Площа
бічної поверхні конуса дорівнює S. Знайдіть площу перерізу, якщо твірна
конуса утворює з висотою кут α.
Через дві твірні конуса, кут між якими β, проведено площину. Площа
бічної поверхні конуса дорівнює S. Знайдіть площу перерізу, якщо твірна
конуса утворює з висотою кут α.
Через дві твірні конуса, кут між якими β, проведено площину. Площа
бічної поверхні конуса дорівнює S. Знайдіть площу перерізу, якщо твірна
конуса утворює з висотою кут α.
Через дві твірні конуса, кут між якими β, проведено площину. Площа
бічної поверхні конуса дорівнює S. Знайдіть площу перерізу, якщо твірна
конуса утворює з висотою кут α.
Через дві твірні конуса, кут між якими β, проведено площину. Площа
бічної поверхні конуса дорівнює S. Знайдіть площу перерізу, якщо твірна
конуса утворює з висотою кут α.
Через дві твірні конуса, кут між якими β, проведено площину. Площа
бічної поверхні конуса дорівнює S. Знайдіть площу перерізу, якщо твірна
конуса утворює з висотою кут α.
Через дві твірні конуса, кут між якими β, проведено площину. Площа
бічної поверхні конуса дорівнює S. Знайдіть площу перерізу, якщо твірна
конуса утворює з висотою кут α.
Через дві твірні конуса, кут між якими β, проведено площину. Площа
бічної поверхні конуса дорівнює S. Знайдіть площу перерізу, якщо твірна
конуса утворює з висотою кут α.
Через дві твірні конуса, кут між якими β, проведено площину. Площа
бічної поверхні конуса дорівнює S. Знайдіть площу перерізу, якщо твірна
конуса утворює з висотою кут α.
Через дві твірні конуса, кут між якими β, проведено площину. Площа
бічної поверхні конуса дорівнює S. Знайдіть площу перерізу, якщо твірна
конуса утворює з висотою кут α.
Через дві твірні конуса, кут між якими β, проведено площину. Площа
бічної поверхні конуса дорівнює S. Знайдіть площу перерізу, якщо твірна
конуса утворює з висотою кут α.
Геометрия - важный раздел математики. Ее возникновение уходит в глубь тысячелетий и связано прежде всего с развитием ремесел, культуры, искусств, с трудовой деятельностью человека и наблюдением окружающего мира. Об этом свидетельствуют названия геометрических фигур.
Например, название фигуры "трапеция" происходит от греческого слова "трапезион" (столик) , от которого произошли также слово "трапеза" и другие родственные слова. От греческого слова "конос" (сосновая шишка) произошло название "конус", а термин "линия" возник от латинского "линум" (льняная нить) .
Геометрические знания широко применяются в жизни - в быту, на производстве, в науке. При покупке обоев надо знать площадь стен комнаты; при определении расстояния до предмета, наблюдаемого с двух точек зрения, нужно пользоваться известными вам теоремами; при изготовлении технических чертежей - выполнять геометрические построения. И если ты, юный читатель, хорошо изучил курс геометрии, то не останешься безоружным, когда при решении практических задач потребуется применить геометрические теоремы или формулы.
1) угол ВАД равен углу САД.
отсюда угол А = ВАД + САД = 49 + 49 = 98
из треугольника АВС знаем угол С = 23
тогда : 98 + 23 + угол В = 180, угол В = 180 - 121 = 59 градусов
2) так как L на середине стороны АС то расстояние от S до L это и есть апофема т.е
площадь боковой поверхности найдем : S бок = 3 * S1 (так как правильная пирамида)
S1 = h*a/2 (h - апофема, а - сторона основания)
S1 = 5*6/2 = 15
S бок = 3*15 = 45