Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. Св-ва касательных: Теорема1: Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания. Теорема2: Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные треугольники с прямой, проходящие через эту точку и центр окружности. Теорема3: Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.
Уравнение окружности имеет вид , где - координаты центра окружности, R- радиус По условию центр окружности А(2; 2). Тогда уравнение примет вид
Осталось найти радиус. По условию прямая касается окружности. Так как радиус в точку касания перпендикулярен касательной в этой точке, то длина радиуса будет равна расстоянию от центра окружности до прямой.
Расстояние от точки А (2; 2) до прямой 3x + у - 18 = 0 (общий вид прямой ax + by + c = 0) вычисляется по формуле:
Св-ва касательных:
Теорема1: Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
Теорема2: Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные треугольники с прямой, проходящие через эту точку и центр окружности.
Теорема3: Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.