1) Поскольку этот четырехугольник вписанный, сумма его противоположных углов равна 180°
Угол D, противолежащий углу В=80, равен 100; угол С, противолежащий углу А=60, равен 120°
------------------
2)Вокруг трапеции можно описать окружность тогда и только тогда, когда ее боковые стороны равны.
Если основание и боковые стороны трапеции равны, то один из треугольников, на которые диагонали делят трапецию, равнобедренный, основанием в нём является диагональ.
Треугольник ВСD равнобедренный, углы ВDС=СВD.
Угол ВСD=180-60=120°
Отсюда угол ВDС= СDВ= (180-60):2=30°.
Углы АВD и АСD равны 120-30=90°
Следовательно, треугольники АВD и ACD - прямоугольные.
Центр описанной вокруг прямоугольного треугольника окружности лежит на середине его гипотенузы.
Объяснение:
ДАНО. СЕ║ВА, ∠3=130°.
НАЙТИ .∠АСД
РЕШЕНИЕ.
Т.к прямые паралейны, и секущая АЕ⇒∠3=ВАД=130°.
∠1=∠2=130°:2=65°.
∠1=∠АСД при СЕ║ВА и секущей СА⇒∠АСД=65°