В задании фигура с указанными координатами неправильно названа - это параллелограмм. В любом случае диагональю фигуру разбить на 2 треугольника, Искомая площадь равна сумме двух треугольников. Треугольник АВС Точка А Точка В Точка С Ха Уа Хв Ув Хс Ус 2 -2 8 -4 8 8 Длины сторон: АВ ВС АС 6.32455532 12 11.66190379 Периметр Р = 29.98646, p = 1/2Р = 14.99323, Площадь определяем по формуле Герона: S = 36.
Треугольник АСД Точка А Точка С Точка Д Ха Уа Хс Ус Хд Уд 2 -2 8 8 2 10 АС СД АД 11.6619038 6.32455532 12 Периметр Р = 29.99, р = /2Р = 4.99 Площадь определяем по формуле Герона: S = 36. Итого площадь фигуры равна 36 + 36 = 72 кв.ед.
1) Рассмотрим 2 треугольника: АВВ1, АОС1: - оба прямоугольные - уголВАО общий известно, что сумма острых углов прямоугольного треугольника величина постоянная (равна π/2), или: уголАВВ1+уголВАВ1=уголАОС1+уголС1АО(=π/2), очевидно: уголВАВ1≡уголС1АО(≡ВАО), уголАВВ1≡уголАВС, уголАОС1≡уголАОС⇒получаем: уголАВС+уголВАО=уголАОС+уголВАО, уголАВС=уголАОС, ч.т.д
или вот так: уголВСС1=уголОСВ1 (вертикальные при пересекающихся ОС1иВВ1)) Тогда π/2-уголВСС1=π/2-уголОСВ1, а из треугольников(прямоугольных) ΔВСС1, ΔОСВ1 получим, что эти углы равны тем которые нам надо сравнить: уголАВС=уголАОС, ч.т.д
2) это утверждение верно, только если АС=СВ, то есть нам дан равнобедренный тупоугольный треугольник.
САВ, СВА
Объяснение:
Прилагаются, значит этот отрезок, соприкасаясь с другим, создаёт угол, а если нужно найти углы в треугольнике, то их 2: САВ и СВА.