а)ИЗ треугольника AOS(угол О=90 град.): SA = SO:cosSAO = sqrt(6): cos60 = sqrt(6):0,5 = 2sqrt(6).
б) Sбок = Pl / 2.
Необходимо найти апофему l и сторону основания.
ИЗ треугольника AOS(угол О=90 град.): ОА=SO: tg SAO = sqrt(6): sqrt(3)=sqrt(2)/
ОА - половина диагонали квадрата АВСD. Тогда вся диагональ АС = 2sqrt(2). Посвойству правильного 4-х угольника, сторона квадрата в sqrt(2)рах меньше его диагонали. Тогда а=АВ=2.
Р = 4а = 4*2=8
Пусть SК - апофема l. ОК - проекция апофемы на плоскость основания. ОК = 0,5 АВ = 2:2=1. Из треугольника SOK (угол SOK = 90 град)по теореме Пифагора: SK= sqrt(6+1)=sqrt(7)
Sбок = 8*sqrt(7) / 2 = 4sqrt(7).
Объяснение:
Строим сечение. Соединяем точку В с точкой К (серединой SC)
Проводим КМ || AB, Соединяем точку М с точкой А
Сечение ВКМА- трапеция.
КМ- средняя линия треугольника SCD и КМ=1/2 CD=1/2
В треугольнике BSC SK- медиана, но так как треугольник равносторонний, то и высота. По теореме Пифагора BK²=BC²-KC²=1-(1/2)²=3/4.
BK=√3/2.
Находим площадь равнобедренной трапеции : МК=1/2, АВ=1, ВК=МА=√3/2 ( см рисунок 2)
Проводим высоты КН и МР. ВН=РА=1/4
По теореме Пифагора
КН²=ВК²-ВН²=(√3/2)²-(1/4)²=3/4-1/16=12/16-1/16=11/16
КН=√11/4
S(сечения)=(АВ+КМ)КН/2=1/2 ·(1+1/2)√11/4=3√11/16
Объяснение: