Четырехугольник ABCD задан координатами своих вершин A(-1; 0), B(2; 3),C(3; 0), D(-1; -1). Найдите косинус острого угла между диагоналями AC и BD.
ответ: 3/5 =0,6
Объяснение: α = AC^BD
AC ={3 -(-1) ; 0 -0} AC ={ 4 ; 0} ; |AC| =4
BD ={-1 -2 ; -1 -3} BD ={ -3 ; -4} ; |BD| =√( (-3)²+(-4)²) =√(9 +16 ) =5
AC*BD =|AC|*|BD|cos(AC^BD) =4*5*cosα (по определению скалярного произведения двух векторов)
AC*BD =4*(-3) +0*(-4) = - 12 (по теорему скалярного произведения двух векторов; сумма произведения соответствующих координат).
4*5*cosα = - 12 ⇔cosα = -3/ 5 < 0 (α -тупой угол)
Острый угол между диагоналями AC и BD будет смежный угол : β =180° - α ⇒ cosβ =cos(180° -α) = -cosα = 3/5 .
* * * ИЛИ | cosβ| = | (x₁*x₂+y₁*y₂) / √(x₁²+y₁²) *√(x₂²+y₂²) * * *
ВС=2*2=4 см, а АD=2*5=10 см.
Трапеция равнобедренная, значит высота ВН, проведенная у большему основанию, делит его на два отрезка, большй из которых равен полусумме оснований, а меньший - их полуразности.
Значит АН=(10-4):2=3 см. В прямоугольном треугольнике АВН катет АН равен половине гипотенузы АВ, следовательно, угол, против которого лежит этот катет (<ABH), равен 30° (свойство).
В прямоугольном треугольнике сумма острых углов равна 90°, значит
<A=90°-30°=60°.
Углы трапеции, прилежащие к боковой стороне, в сумме равны 180°.
Значит угол В=180°-60°=120°.
Так как трапеция равнобедренная, углы при основаниях равны.
ответ: <A=<D=60°, <B=<C=120°.