Постройте 3 центральных и 3 вписанных угла на разных окружностях, измерьте их и найдите градусные меры дуг, на которые они опираются ЧЕМ БЫСТРЕЙ ОТВЕТИТЕ ТЕМ БОЛЬШЕ ДАДУ ВАМ БАЛОВ.
Плоскость прямоугольника и плоскость АВК пересекаются по прямой АВ. Прямая СД принадлежит плоскости прямоугольника, но не пренадлежит плоскости АВК. Тут два варианта: либо она параллельна плоскости АВК, либо пепесекает ее. Теперь теоремма. Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельна самой этой плоскости. Так как АВСД прямоугольник, то АВ парал. СД. Поскольку АВ принадлежит плоскости АВК, то прямая СД параллельна плоскости АВК на основании теореммы о параллельности прямой и плоскости.
Треугольник СДЕ прямоугольный и равнобедренный, так как СЕ высота трапеции, а угол СДЕ равен 450, тогда СЕ = ЕД = 4 см.
Так как BF высота трапеции, то BF = СЕ = 4 см, а треугольник АВF прямоугольный, тогда: tg60 = BF / AF. AF = BF / tg60 = 4 / √3 см.
Длина отрезка EF = ВС = 5 см, тогда АД = AF + EF + ДЕ = 4 / √3 + 5 + 4 = 9 + 4 / √3 см.
Определим площадь трапеции:
Sавсд = (ВС + АД) * СЕ / 2 = (5 + 9 + 4 / √3) * 4 / 2 = 28 + 8 / √3 = (84 + 8 * √3) / 3 см2.
ответ: Площадь трапеции равна (84 + 8 * √3) / 3 см2
как то так =)