2. AC=BC как отрезки касательных, проведённых из одной точки.
3. BCO=ACO,так как центр окружности, вписанноц в угол, лежит на бесектрисе этого угла.
4. BOC=AOC.
Равенство этих углов следует из равенства треугольников BOC и AOC:
OA=OB как радиус OAC=OBC =90°, так как радиус, проведённый в точку касания, перпендикулярен касательной, OC -общая сторона, BOC=AOC по катеру и гипотезе .
5. OBC=OAC=90°,так как радиус, проведённыц в точку касания,перпеникулярен касательной.
Вокруг прямоуг.треугольника опишем окружность. По т.о том, что прямой угол всегда опирается на диаметр имеем, что вершина прямого угла лежит на окружности, а гипотенуза является диаметром. Радиус окружности равен 12/2=6 см. Для нахождения площади высоту на гипотенузу опускаем из вершины прямого угла, поэтому высота с одной стороны может быть очень маленькой - близкой к нулю, а с другой стороны - максимальное значение она принимает, когда равна радиусу окружности =6, тогда площадь треугольника меняется от нуля, не включая ноль, до 1/2*6*12=36. ответ: (0; 36].
Вокруг прямоуг.треугольника опишем окружность. По т.о том, что прямой угол всегда опирается на диаметр имеем, что вершина прямого угла лежит на окружности, а гипотенуза является диаметром. Радиус окружности равен 12/2=6 см. Для нахождения площади высоту на гипотенузу опускаем из вершины прямого угла, поэтому высота с одной стороны может быть очень маленькой - близкой к нулю, а с другой стороны - максимальное значение она принимает, когда равна радиусу окружности =6, тогда площадь треугольника меняется от нуля, не включая ноль, до 1/2*6*12=36. ответ: (0; 36].
ответ:1. AO=BO как радиусы.
2. AC=BC как отрезки касательных, проведённых из одной точки.
3. BCO=ACO,так как центр окружности, вписанноц в угол, лежит на бесектрисе этого угла.
4. BOC=AOC.
Равенство этих углов следует из равенства треугольников BOC и AOC:
OA=OB как радиус OAC=OBC =90°, так как радиус, проведённый в точку касания, перпендикулярен касательной, OC -общая сторона, BOC=AOC по катеру и гипотезе .
5. OBC=OAC=90°,так как радиус, проведённыц в точку касания,перпеникулярен касательной.
Объяснение: